1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
//
// Copyright (C) 2018 Kubos Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License")
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//

use super::*;

/// Structure to contain all possible variables which can be returned
/// by the standard telemetry message's `rotating_variable` fields
#[derive(Clone, Debug, Default, PartialEq)]
pub struct RotatingTelemetry {
    /// IGRF magnetic fields (X, Y, Z) (Tesla)
    pub b_field_igrf: [f32; 3],
    /// ECI Sun Vector from Ephemeris (X, Y, Z) (Unit)
    pub sun_vec_eph: [f32; 3],
    /// ECI Spacecraft Position (X, Y, Z) (km)
    pub sc_pos_eci: [f32; 3],
    /// ECI Spacecraft Velocity (X, Y, Z) (km)
    pub sc_vel_eci: [f32; 3],
    /// Keplerian elements
    pub kepler_elem: KeplerElem,
    /// Bdot Gain Acquisition Mode (X, Y, Z)
    pub k_bdot: [f32; 3],
    /// Proportional Gain Normal Mode (X, Y, Z)
    pub kp: [f32; 3],
    /// Derivative Gain Normal Mode (X, Y, Z)
    pub kd: [f32; 3],
    /// Unloading Gain Normal Mode (X, Y, Z)
    pub k_unload: [f32; 3],
    /// CSS{n} Bias (1, 2, 3, 4, 5, 6)
    pub css_bias: [i16; 6],
    /// MAG Bias (X, Y, Z)
    pub mag_bias: [i16; 3],
    /// RWS Bus Voltage (0.00483516483 v/lsb)
    pub rws_volt: i16,
    /// Reserved
    pub rws_press: i16,
    /// Attitude Determination Mode
    pub att_det_mode: u8,
    /// RWS Reset Counter (X, Y, Z)
    pub rws_reset_cntr: [u8; 3],
    /// Sun and Mag Field are aligned
    pub sun_mag_aligned: u8,
    /// Software Minor Version
    pub minor_version: u8,
    /// Software Unit Serial Number
    pub mai_sn: u8,
    /// Orbit Propagation Mode
    pub orbit_prop_mode: u8,
    /// ACS Mode in Operation
    pub acs_op_mode: u8,
    /// ADACS Processor Reset Counter
    pub proc_reset_cntr: u8,
    /// Software Major Version
    pub major_version: u8,
    /// ADS Mode in Operation
    pub ads_op_mode: u8,
    /// CSS{n} Gain (1, 2, 3, 4, 5, 6)
    pub css_gain: [f32; 6],
    /// Mag Gain (X, Y, Z)
    pub mag_gain: [f32; 3],
    /// Epoch of Current Orbit (GPS sec)
    pub orbit_epoch: u32,
    /// True Anomaly at Epoch – Kepler (deg)
    pub true_anomoly_epoch: f32,
    /// Epoch of Next Updated RV (GPS sec)
    pub orbit_epoch_next: u32,
    /// ECI Position at Next Epoch (X, Y, Z) (km)
    pub sc_pos_eci_epoch: [f32; 3],
    /// ECI Velocity at Next Epoch (X, Y, Z) (km/sec)
    pub sc_vel_eci_epoch: [f32; 3],
    /// QbX Wheel Speed Command (rpm)
    pub qb_x_wheel_speed: i16,
    /// QbX Filter Gain
    pub qb_x_filter_gain: f32,
    /// QbX Dipole Gain
    pub qb_x_dipole_gain: f32,
    /// Dipole Gain (X, Y, Z)
    pub dipole_gain: [f32; 3],
    /// Wheel Speed Bias (X, Y, Z) (rpm)
    pub wheel_speed_bias: [i16; 3],
    /// Cosine of Sun/Mag Align Threshold Angle
    pub cos_sun_mag_align_thresh: f32,
    /// Max AngleToGo for Unloading (rad)
    pub unload_ang_thresh: f32,
    /// Quaternion feedback saturation.
    pub q_sat: f32,
    /// Maximum RWA Torque (mNm)
    pub rwa_trq_max: f32,
    /// Reaction Wheel Motor Current (X, Y, Z) (A) (0.0003663003663 A/lsb)
    pub rws_motor_current: [u16; 3],
    /// RWS Motor Temperature (Temperature oC = rwsMotorTemp * 0.0402930 - 50)
    pub rws_motor_temp: i16,
}

impl RotatingTelemetry {
    /// Extract the self variables from a standard telemetry message and update
    /// the appropriate corresponding fields in a [`selfTelemetry`] structure
    ///
    /// # Arguments
    ///
    /// * msg - Standard telemetry message to extract variables from
    /// * self - self variables structure to copy extracted data into
    ///
    /// # Errors
    ///
    /// If errors are encountered, the structure will not be updated
    ///
    /// # Examples
    ///
    /// ```
    /// # use mai400_api::*;
    /// # fn func() -> MAIResult<()> {
    /// let mai = MAI400::new("/dev/ttyS5")?;
    ///
    /// let mut rotating = RotatingTelemetry::default();
    ///
    /// let (std, _imu, _irehs) = mai.get_message()?;
    /// if std.is_some() {
    /// 	rotating.update(&std.unwrap());
    /// }
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// [`MAIError`]: enum.MAIError.html
    ///
    /// [`selfTelemetry`]: struct.selfTelemetry.html
    pub fn update(&mut self, msg: &StandardTelemetry) {
        // Note: The documentation says the 3 MSB are used for version information,
        // so we want to isolate just the rotating counter bits
        match msg.tlm_counter & 0x1F {
            0 => {
                self.b_field_igrf[0] = f32::from_bits(msg.rotating_variable_a);
                self.b_field_igrf[1] = f32::from_bits(msg.rotating_variable_b);
                self.b_field_igrf[2] = f32::from_bits(msg.rotating_variable_c);
            }
            1 => {
                self.sun_vec_eph[0] = f32::from_bits(msg.rotating_variable_a);
                self.sun_vec_eph[1] = f32::from_bits(msg.rotating_variable_b);
                self.sun_vec_eph[2] = f32::from_bits(msg.rotating_variable_c);
            }
            2 => {
                self.sc_pos_eci[0] = f32::from_bits(msg.rotating_variable_a);
                self.sc_pos_eci[1] = f32::from_bits(msg.rotating_variable_b);
                self.sc_pos_eci[2] = f32::from_bits(msg.rotating_variable_c);
            }
            3 => {
                self.sc_vel_eci[0] = f32::from_bits(msg.rotating_variable_a);
                self.sc_vel_eci[1] = f32::from_bits(msg.rotating_variable_b);
                self.sc_vel_eci[2] = f32::from_bits(msg.rotating_variable_c);
            }
            4 => {
                self.kepler_elem.semi_major_axis = f32::from_bits(msg.rotating_variable_a);
                self.kepler_elem.eccentricity = f32::from_bits(msg.rotating_variable_b);
                self.kepler_elem.inclination = f32::from_bits(msg.rotating_variable_c);
            }
            5 => {
                self.kepler_elem.raan = f32::from_bits(msg.rotating_variable_a);
                self.kepler_elem.arg_parigee = f32::from_bits(msg.rotating_variable_b);
                self.kepler_elem.true_anomoly = f32::from_bits(msg.rotating_variable_c);
            }
            6 => {
                self.k_bdot[0] = f32::from_bits(msg.rotating_variable_a);
                self.k_bdot[1] = f32::from_bits(msg.rotating_variable_b);
                self.k_bdot[2] = f32::from_bits(msg.rotating_variable_c);
            }
            7 => {
                self.kp[0] = f32::from_bits(msg.rotating_variable_a);
                self.kp[1] = f32::from_bits(msg.rotating_variable_b);
                self.kp[2] = f32::from_bits(msg.rotating_variable_c);
            }
            8 => {
                self.kd[0] = f32::from_bits(msg.rotating_variable_a);
                self.kd[1] = f32::from_bits(msg.rotating_variable_b);
                self.kd[2] = f32::from_bits(msg.rotating_variable_c);
            }
            9 => {
                self.k_unload[0] = f32::from_bits(msg.rotating_variable_a);
                self.k_unload[1] = f32::from_bits(msg.rotating_variable_b);
                self.k_unload[2] = f32::from_bits(msg.rotating_variable_c);
            }
            10 => {
                self.css_bias[0] = msg.rotating_variable_a as i16;
                self.css_bias[1] = msg.rotating_variable_b as i16;
                self.css_bias[2] = msg.rotating_variable_c as i16;
                self.css_bias[3] = msg.rotating_variable_a.wrapping_shr(16) as i16;
                self.css_bias[4] = msg.rotating_variable_b.wrapping_shr(16) as i16;
                self.css_bias[5] = msg.rotating_variable_c.wrapping_shr(16) as i16;
            }
            11 => {
                self.mag_bias[0] = msg.rotating_variable_a as i16;
                self.mag_bias[1] = msg.rotating_variable_b as i16;
                self.mag_bias[2] = msg.rotating_variable_c as i16;
                self.rws_volt = msg.rotating_variable_a.wrapping_shr(16) as i16;
                self.rws_press = msg.rotating_variable_b.wrapping_shr(16) as i16;
            }
            12 => {
                self.att_det_mode = msg.rotating_variable_a as u8;
                self.rws_reset_cntr[0] = msg.rotating_variable_a.wrapping_shr(8) as u8;
                self.sun_mag_aligned = msg.rotating_variable_a.wrapping_shr(16) as u8;
                self.minor_version = msg.rotating_variable_a.wrapping_shr(24) as u8;
                self.mai_sn = msg.rotating_variable_b as u8;
                self.rws_reset_cntr[1] = msg.rotating_variable_b.wrapping_shr(8) as u8;
                self.orbit_prop_mode = msg.rotating_variable_b.wrapping_shr(16) as u8;
                self.acs_op_mode = msg.rotating_variable_b.wrapping_shr(24) as u8;
                self.proc_reset_cntr = msg.rotating_variable_c as u8;
                self.rws_reset_cntr[2] = msg.rotating_variable_c.wrapping_shr(8) as u8;
                self.major_version = msg.rotating_variable_c.wrapping_shr(16) as u8;
                self.ads_op_mode = msg.rotating_variable_c.wrapping_shr(24) as u8;
            }
            13 => {
                self.css_gain[0] = f32::from_bits(msg.rotating_variable_a);
                self.css_gain[1] = f32::from_bits(msg.rotating_variable_b);
                self.css_gain[2] = f32::from_bits(msg.rotating_variable_c);
            }
            14 => {
                self.css_gain[3] = f32::from_bits(msg.rotating_variable_a);
                self.css_gain[4] = f32::from_bits(msg.rotating_variable_b);
                self.css_gain[5] = f32::from_bits(msg.rotating_variable_c);
            }
            15 => {
                self.mag_gain[0] = f32::from_bits(msg.rotating_variable_a);
                self.mag_gain[1] = f32::from_bits(msg.rotating_variable_b);
                self.mag_gain[2] = f32::from_bits(msg.rotating_variable_c);
            }
            16 => {
                self.orbit_epoch = msg.rotating_variable_a as u32;
                self.true_anomoly_epoch = f32::from_bits(msg.rotating_variable_b);
                self.orbit_epoch_next = msg.rotating_variable_c as u32;
            }
            17 => {
                self.sc_pos_eci_epoch[0] = f32::from_bits(msg.rotating_variable_a);
                self.sc_pos_eci_epoch[1] = f32::from_bits(msg.rotating_variable_b);
                self.sc_pos_eci_epoch[2] = f32::from_bits(msg.rotating_variable_c);
            }
            18 => {
                self.sc_vel_eci_epoch[0] = f32::from_bits(msg.rotating_variable_a);
                self.sc_vel_eci_epoch[1] = f32::from_bits(msg.rotating_variable_b);
                self.sc_vel_eci_epoch[2] = f32::from_bits(msg.rotating_variable_c);
            }
            19 => {
                self.qb_x_wheel_speed = msg.rotating_variable_a.wrapping_shr(16) as i16;
                self.qb_x_filter_gain = f32::from_bits(msg.rotating_variable_b);
                self.qb_x_dipole_gain = f32::from_bits(msg.rotating_variable_c);
            }
            20 => {
                self.dipole_gain[0] = f32::from_bits(msg.rotating_variable_a);
                self.dipole_gain[1] = f32::from_bits(msg.rotating_variable_b);
                self.dipole_gain[2] = f32::from_bits(msg.rotating_variable_c);
            }
            21 => {
                self.wheel_speed_bias[0] = msg.rotating_variable_a as i16;
                self.wheel_speed_bias[1] = msg.rotating_variable_b as i16;
                self.wheel_speed_bias[2] = msg.rotating_variable_c as i16;
            }
            22 => {
                self.cos_sun_mag_align_thresh = f32::from_bits(msg.rotating_variable_a);
                self.unload_ang_thresh = f32::from_bits(msg.rotating_variable_b);
                self.q_sat = f32::from_bits(msg.rotating_variable_c);
            }
            23 => {
                self.rwa_trq_max = f32::from_bits(msg.rotating_variable_a);
                self.rws_motor_current[0] = msg.rotating_variable_b as u16;
                self.rws_motor_current[1] = msg.rotating_variable_b.wrapping_shr(16) as u16;
                self.rws_motor_current[2] = msg.rotating_variable_c as u16;
                self.rws_motor_temp = msg.rotating_variable_c.wrapping_shr(16) as i16;
            }
            _ => {}
        }
    }
}

/// Structure for keplarian elements returned in the standard telemetry message
#[derive(Clone, Debug, Default, PartialEq)]
pub struct KeplerElem {
    /// Semi major axis (km)
    pub semi_major_axis: f32,
    /// Eccentricity
    pub eccentricity: f32,
    /// Inclination (deg)
    pub inclination: f32,
    /// Right ascension of ascending node (deg)
    pub raan: f32,
    /// Argument of perigee (deg)
    pub arg_parigee: f32,
    /// True anomaly (deg)
    pub true_anomoly: f32,
}