1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
//
// Copyright (C) 2018 Kubos Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License")
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Contributed by: William Greer ([email protected]) and Sam Justice ([email protected])
//

use crate::config::*;
use crate::errors::*;
use crate::telemetry::*;
use byteorder::{BigEndian, ByteOrder};
use log::info;
use pnet::packet::udp::{ipv4_checksum, UdpPacket};
use pnet::packet::Packet;
use std::net::{Ipv4Addr, UdpSocket};
use std::ops::Range;
use std::str::FromStr;
use std::sync::{Arc, Mutex};
use std::thread;
use std::time::Duration;

// UDP header length.
const HEADER_LEN: usize = 8;
// Checksum location in UDP packet.
const CHKSUM_RNG: Range<usize> = 6..8;
// Communication service maximum packet size (65,535 - 20 byte IP header - 8 byte UDP header
//  - 8 byte UDP header).
const MAX_SIZE: usize = 65499;

/// Type definition for a "read" function pointer.
pub type ReadFn<T> = Fn(&T) -> CommsResult<Vec<u8>> + Send + Sync + 'static;
/// Type definition for a "write" function pointer.
pub type WriteFn<T> = Fn(&T, &[u8]) -> CommsResult<()> + Send + Sync + 'static;

/// Struct that holds configuration data to allow users to set up a Communication Service.
#[derive(Clone)]
pub struct CommsControlBlock<T: Clone> {
    /// Function pointer to a function that defines how to read from a gateway.
    pub read: Option<Arc<ReadFn<T>>>,
    /// Function pointers to functions that define methods for writing data over a gateway.
    pub write: Vec<Arc<WriteFn<T>>>,
    /// Gateway connection to read from.
    pub read_conn: T,
    /// Gateway connection to write to.
    pub write_conn: T,
    /// Starting port used to define a range of ports that are used in the message handlers
    /// that handle messages received from the ground.
    pub handler_port_min: u16,
    /// Ending port used to define a range of ports that are used in the message handlers
    /// that handle messages received from the ground.
    pub handler_port_max: u16,
    /// Timeout for the completion of GraphQL operations within message handlers (in milliseconds).
    pub timeout: u64,
    /// IP address of the ground gateway.
    pub ground_ip: Ipv4Addr,
    /// IP address of the computer that is running the communication service.
    pub satellite_ip: Ipv4Addr,
    /// Optional list of ports used by downlink endpoints that send messages to the ground.
    /// Each port in the list will be used by one downlink endpoint.
    pub downlink_ports: Option<Vec<u16>>,
    /// Specifies the port to which the ground gateway is bound.
    pub ground_port: Option<u16>,
}

impl<T: Clone> CommsControlBlock<T> {
    /// Creates a new instance of the CommsControlBlock
    pub fn new(
        read: Option<Arc<ReadFn<T>>>,
        write: Vec<Arc<WriteFn<T>>>,
        read_conn: T,
        write_conn: T,
        config: CommsConfig,
    ) -> Self {
        CommsControlBlock {
            read,
            write,
            read_conn,
            write_conn,
            handler_port_min: config.handler_port_min.unwrap_or(DEFAULT_HANDLER_START),
            handler_port_max: config.handler_port_max.unwrap_or(DEFAULT_HANDLER_END),
            timeout: config.timeout.unwrap_or(DEFAULT_TIMEOUT),
            ground_ip: Ipv4Addr::from_str(
                &config.ground_ip.unwrap_or(DEFAULT_GROUND_IP.to_string()),
            )
            .unwrap(),
            satellite_ip: Ipv4Addr::from_str(
                &config
                    .satellite_ip
                    .unwrap_or(DEFAULT_SATELLITE_IP.to_string()),
            )
            .unwrap(),
            downlink_ports: config.downlink_ports,
            ground_port: config.ground_port,
        }
    }
}

/// Struct that enables users to start the Communication Service.
pub struct CommsService;

impl CommsService {
    /// Starts an instance of the Communication Service and its associated background threads.
    pub fn start<T: Clone + Send + 'static>(
        control: CommsControlBlock<T>,
        telem: &Arc<Mutex<CommsTelemetry>>,
    ) -> CommsResult<()> {
        // Make sure a `read()` function and a `write()` function exist before starting the read thread.
        if control.write.is_empty() {
            if control.read.is_some() {
                let telem_ref = telem.clone();
                let control_ref = control.clone();
                thread::spawn(move || read_thread(control_ref, &telem_ref));
            }
        } else {
            return Err(CommsServiceError::MissingWriteMethod.into());
        }

        // For each provided `write()` function, spawn a downlink endpoint thread.
        if let Some(ports) = control.downlink_ports {
            if control.write.len() == ports.len() {
                for (_, (port, write)) in ports.iter().zip(control.write.iter()).enumerate() {
                    let telem_ref = telem.clone();
                    let port_ref = *port;
                    let conn_ref = control.write_conn.clone();
                    let write_ref = write.clone();
                    let ground_ip = control.ground_ip;
                    let sat_ip = control.satellite_ip;
                    let ground_port = control
                        .ground_port
                        .ok_or(CommsServiceError::MissingGroundPort)?;
                    thread::spawn(move || {
                        downlink_endpoint(
                            &telem_ref,
                            port_ref,
                            conn_ref,
                            &write_ref,
                            ground_ip,
                            sat_ip,
                            ground_port,
                        );
                    });
                }
            } else {
                return Err(CommsServiceError::ParameterLengthMismatch.into());
            }
        }

        info!("Communication service started");
        Ok(())
    }
}

// This thread reads from a gateway and passes received messages to message handlers.
fn read_thread<T: Clone + Send + 'static>(
    comms: CommsControlBlock<T>,
    data: &Arc<Mutex<CommsTelemetry>>,
) {
    // Setup port rotation for message handlers.
    let mut port = comms.handler_port_min;

    // Take reader from control block.
    let read = comms.read.unwrap();

    loop {
        // Read bytes from the radio.
        let bytes = match (read)(&comms.read_conn.clone()) {
            Ok(bytes) => bytes,
            Err(e) => {
                log_error(&data, e.to_string()).unwrap();
                continue;
            }
        };

        // Create a UDP packet from the received information.
        let packet = match UdpPacket::owned(bytes) {
            Some(packet) => packet,
            None => {
                log_telemetry(&data, &TelemType::UpFailed).unwrap();
                log_error(&data, CommsServiceError::HeaderParsing.to_string()).unwrap();
                error!("Failed to parse packet header");
                continue;
            }
        };

        // Verify checksum of the UDP Packet.
        if packet.get_checksum() != ipv4_checksum(&packet, &comms.ground_ip, &comms.satellite_ip) {
            log_telemetry(&data, &TelemType::UpFailed).unwrap();
            log_error(&data, CommsServiceError::InvalidChecksum.to_string()).unwrap();
            error!("Packet checksum failed");
            continue;
        }

        // Update number of packets up.
        log_telemetry(&data, &TelemType::Up).unwrap();
        info!("UDP Packet successfully uplinked");

        // Bind socket to a port and pass to the message handler.
        let socket = match socket_manager(
            comms.satellite_ip,
            &mut port,
            comms.handler_port_min,
            comms.handler_port_max,
        ) {
            Some(sock) => sock,
            None => {
                log_error(&data, CommsServiceError::NoAvailablePorts.to_string()).unwrap();
                error!("No message handler ports available");
                continue;
            }
        };

        // Spawn new message handler.
        let conn_ref = comms.write_conn.clone();
        let write_ref = comms.write[0].clone();
        let data_ref = data.clone();
        let sat_ref = comms.satellite_ip;
        let ground_ref = comms.ground_ip;
        let time_ref = comms.timeout;
        thread::spawn(move || {
            handle_message(
                &socket, &data_ref, conn_ref, &write_ref, &packet, time_ref, sat_ref, ground_ref,
            );
        });
    }
}

// Helper function to manage binding sockets to the next available port if any are available.
fn socket_manager(ip: Ipv4Addr, port: &mut u16, min: u16, max: u16) -> Option<UdpSocket> {
    let mut socket = None;
    let last = *port;
    while socket.is_none() {
        if *port < max {
            *port += 1;
        } else {
            *port = min;
        }
        socket = UdpSocket::bind((ip, *port)).ok();
        if last == *port {
            break;
        }
    }
    socket
}

// This thread sends a query/mutation to its intended destination and waits for a response.
// The thread then writes the response to the gateway.
fn handle_message<T: Clone>(
    socket: &UdpSocket,
    data: &Arc<Mutex<CommsTelemetry>>,
    write_conn: T,
    write: &Arc<WriteFn<T>>,
    message: &UdpPacket,
    timeout: u64,
    sat_ip: Ipv4Addr,
    ground_ip: Ipv4Addr,
) {
    let mut buf = [0; MAX_SIZE];

    // Set receive timeout for the socket.
    match socket.set_read_timeout(Some(Duration::from_millis(timeout))) {
        Ok(_) => (),
        Err(e) => return log_error(&data, e.to_string()).unwrap(),
    };

    // Send message to the intended service.
    match socket.send_to(message.payload(), (sat_ip, message.get_destination())) {
        Ok(_) => (),
        Err(e) => return log_error(&data, e.to_string()).unwrap(),
    };
    info!("UDP Packet sent to port {}", message.get_destination());

    // Receive response back from the service.
    let (size, _) = match socket.recv_from(&mut buf) {
        Ok(tuple) => tuple,
        Err(e) => return log_error(&data, e.to_string()).unwrap(),
    };

    // Take received message and wrap it in a UDP packet.
    let packet = match build_packet(
        &buf[0..size],
        message.get_destination(),
        message.get_source(),
        (size + HEADER_LEN) as u16,
        sat_ip,
        ground_ip,
    ) {
        Ok(packet) => packet,
        Err(e) => return log_error(&data, e.to_string()).unwrap(),
    };

    // Write packet to the gateway and update telemetry.
    match write(&write_conn.clone(), packet.as_slice()) {
        Ok(_) => {
            log_telemetry(&data, &TelemType::Down).unwrap();
            info!("UDP Packet successfully downlinked");
        }
        Err(e) => {
            log_telemetry(&data, &TelemType::DownFailed).unwrap();
            log_error(&data, e.to_string()).unwrap();
            error!("UDP packet failed to downlink");
        }
    };
}

// This thread reads indefinitely from a UDP socket and then writes received packets to a gateway.
fn downlink_endpoint<T: Clone>(
    data: &Arc<Mutex<CommsTelemetry>>,
    port: u16,
    write_conn: T,
    write: &Arc<WriteFn<T>>,
    ground_ip: Ipv4Addr,
    sat_ip: Ipv4Addr,
    ground_port: u16,
) {
    // Bind the downlink endpoint to a socket.
    let socket = match UdpSocket::bind((sat_ip, port)) {
        Ok(sock) => sock,
        Err(e) => return log_error(&data, e.to_string()).unwrap(),
    };

    loop {
        let mut buf = [0; MAX_SIZE];

        // Indefinitely wait for a message from any application or service.
        let (size, address) = match socket.recv_from(&mut buf) {
            Ok(tuple) => tuple,
            Err(e) => {
                log_error(&data, e.to_string()).unwrap();
                continue;
            }
        };

        // Take received message and wrap it in a UDP packet.
        let packet = match build_packet(
            &buf[0..size],
            address.port(),
            ground_port,
            (size + HEADER_LEN) as u16,
            sat_ip,
            ground_ip,
        ) {
            Ok(packet) => packet,
            Err(e) => {
                log_error(&data, e.to_string()).unwrap();
                continue;
            }
        };

        // Write packet to the gateway and update telemetry.
        match write(&write_conn.clone(), packet.as_slice()) {
            Ok(_) => {
                log_telemetry(&data, &TelemType::Down).unwrap();
                info!("UDP Packet successfully downlinked");
            }
            Err(e) => {
                log_telemetry(&data, &TelemType::DownFailed).unwrap();
                log_error(&data, e.to_string()).unwrap();
                error!("UDP Packet failed to downlink");
            }
        };
    }
}

// Takes the payload and then wraps it into a UDP packet.
fn build_packet(
    payload: &[u8],
    source: u16,
    dest: u16,
    length: u16,
    sat: Ipv4Addr,
    ground: Ipv4Addr,
) -> CommsResult<Vec<u8>> {
    // Create a new UDP packet.
    let mut header = [0; HEADER_LEN];
    let fields = [source, dest, length, 0];
    BigEndian::write_u16_into(&fields, &mut header);
    let mut packet = header.to_vec();
    packet.append(&mut payload.to_vec());

    // Calculate the checksum for the UDP packet.
    let packet_without_checksum = match UdpPacket::owned(packet.clone()) {
        Some(bytes) => bytes,
        None => return Err(CommsServiceError::HeaderParsing.into()),
    };
    let mut checksum = [0; 2];
    BigEndian::write_u16(
        &mut checksum,
        ipv4_checksum(&packet_without_checksum, &sat, &ground),
    );

    // Splice the checksum back into UDP packet.
    packet.splice(CHKSUM_RNG, checksum.iter().cloned());
    Ok(packet)
}