xTaskCreateRestricted
task. More...
task.
h
BaseType_t xTaskCreateRestricted( TaskParameters_t *pxTaskDefinition, TaskHandle_t *pxCreatedTask );
xTaskCreateRestricted() should only be used in systems that include an MPU implementation.
Create a new task and add it to the list of tasks that are ready to run. The function parameters define the memory regions and associated access permissions allocated to the task.
- Parameters
-
pxTaskDefinition Pointer to a structure that contains a member for each of the normal xTaskCreate() parameters (see the xTaskCreate() API documentation) plus an optional stack buffer and the memory region definitions. pxCreatedTask Used to pass back a handle by which the created task can be referenced.
- Returns
- pdPASS if the task was successfully created and added to a ready list, otherwise an error code defined in the file projdefs.h
Example usage:
// Create an TaskParameters_t structure that defines the task to be created. static const TaskParameters_t xCheckTaskParameters = { vATask, // pvTaskCode - the function that implements the task. "ATask", // pcName - just a text name for the task to assist debugging. 100, // usStackDepth - the stack size DEFINED IN WORDS. NULL, // pvParameters - passed into the task function as the function parameters. ( 1UL | portPRIVILEGE_BIT ),// uxPriority - task priority, set the portPRIVILEGE_BIT if the task should run in a privileged state. cStackBuffer,// puxStackBuffer - the buffer to be used as the task stack.
// xRegions - Allocate up to three separate memory regions for access by // the task, with appropriate access permissions. Different processors have // different memory alignment requirements - refer to the FreeRTOS documentation // for full information. { // Base address Length Parameters { cReadWriteArray, 32, portMPU_REGION_READ_WRITE }, { cReadOnlyArray, 32, portMPU_REGION_READ_ONLY }, { cPrivilegedOnlyAccessArray, 128, portMPU_REGION_PRIVILEGED_READ_WRITE } } };
int main( void ) { TaskHandle_t xHandle;// Create a task from the const structure defined above. The task handle // is requested (the second parameter is not NULL) but in this case just for // demonstration purposes as its not actually used. xTaskCreateRestricted( &xRegTest1Parameters, &xHandle ); // Start the scheduler. vTaskStartScheduler(); // Will only get here if there was insufficient memory to create the idle // and/or timer task. for( ;; );}
h
void vTaskAllocateMPURegions( TaskHandle_t xTask, const MemoryRegion_t * const pxRegions );
Memory regions are assigned to a restricted task when the task is created by a call to xTaskCreateRestricted(). These regions can be redefined using vTaskAllocateMPURegions().
- Parameters
-
xTask The handle of the task being updated. xRegions A pointer to an MemoryRegion_t structure that contains the new memory region definitions.
Example usage:
// Define an array of MemoryRegion_t structures that configures an MPU region // allowing read/write access for 1024 bytes starting at the beginning of the // ucOneKByte array. The other two of the maximum 3 definable regions are // unused so set to zero. static const MemoryRegion_t xAltRegions[ portNUM_CONFIGURABLE_REGIONS ] = { // Base address Length Parameters { ucOneKByte, 1024, portMPU_REGION_READ_WRITE }, { 0, 0, 0 }, { 0, 0, 0 } };
void vATask( void *pvParameters ) { // This task was created such that it has access to certain regions of // memory as defined by the MPU configuration. At some point it is // desired that these MPU regions are replaced with that defined in the // xAltRegions const struct above. Use a call to vTaskAllocateMPURegions() // for this purpose. NULL is used as the task handle to indicate that this // function should modify the MPU regions of the calling task. vTaskAllocateMPURegions( NULL, xAltRegions );
// Now the task can continue its function, but from this point on can only // access its stack and the ucOneKByte array (unless any other statically // defined or shared regions have been declared elsewhere). }